Predictive Spatio-temporal Models for Spatially Sparse Environmental Data

نویسنده

  • Xavier de Luna
چکیده

We present a family of spatio-temporal models which are geared to provide time-forward predictions in environmental applications where data is spatially sparse but temporally rich. That is measurements are made at few spatial locations (stations), but at many regular time intervals. When predictions in the time direction is the purpose of the analysis, then spatial-stationarity assumptions which are commonly used in spatial modeling, are not necessary. The family of models proposed does not make such assumptions and consists of a vector autoregressive (VAR) specification, where there are as many time series as stations. However, by taking into account the spatial dependence structure, a model building strategy is introduced which borrows its simplicity from the Box-Jenkins strategy for univariate autoregressive (AR) models for time series. As for AR models, model building may be performed either by displaying sample partial correlation functions, or by minimizing an information criterion. A simulation study illustrates the gain resulting from our modeling strategy. Two environmental data sets are studied. In particular, we find evidence that a parametric modeling of the spatio-temporal correlation function is not appropriate because it rests on too strong assumptions. Moreover, we propose to compare model selection strategies with an out-of-sample validation method based on recursive prediction errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study

Many physical and sociological processes are represented as discrete events in time and space. These spatio-temporal point processes are often sparse, meaning that they cannot be aggregated and treated with conventional regression models. Models based on the point process framework may be employed instead for prediction purposes. Evaluating the predictive performance of these models poses a uni...

متن کامل

A Framework for Using Self-Organizing Maps to Analyze Spatio- Temporal Patterns, Exemplified by Analysis of Mobile Phone Usage

We suggest a visual analytics framework for the exploration and analysis of spatially and temporally referenced values of numeric attributes. The framework supports two complementary perspectives on spatio-temporal data: as a temporal sequence of spatial distributions of attribute values (called spatial situations) and as a set of spatially referenced time series of attribute values representin...

متن کامل

Sparse Approximate Inference for Spatio-Temporal Point Process Models

Spatio-temporal point process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computationally challenging both due to the high resolution modelling generally required and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretised log-Gaussian Cox ...

متن کامل

Sparse Group Lasso: Consistency and Climate Applications

The design of statistical predictive models for climate data gives rise to some unique challenges due to the high dimensionality and spatio-temporal nature of the datasets, which dictate that models should exhibit parsimony in variable selection. Recently, a class of methods which promote structured sparsity in the model have been developed, which is suitable for this task. In this paper, we pr...

متن کامل

Spatio-Temporal Models For Sustainability

Many applications that aim at enhancing sustainability rely on some sort of spatio-temporal model. The task can be monitoring or prediction in traffic networks, power grids, building energy management, river flow volume, and sea level – to mention just a few. The positive effect on the environment is achieved by a better control, better planning of processes or better disaster management. Spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005